Imaginary numbers are not 'imaginary'. Real numbers are not 'real'. In fact, they're both in our heads... We are quite familiar with the logarithmic function. We define it as the inverse of the exponential function. That is, we say: $$\log{e^x} = e^{\log{x}} = x$$ (In fact, this is how the inverse of a function is even defined.) Now, we're all comfortable with the natural log. We use it for various results, but we always keep in mind that the number we're evaluating is POSITIVE. Why though? Let's consider some negative number $a$. What does it mean to take it's natural logarithm? It means to find a number such that $e$ raised to that number gives $a$. And surely since $e$ raised to any power always gives a positive value, it makes no sense to take the log of a negative number, right? Right? Complex Numbers: Function Domains Remember how we extended the existence of real numbers to the complex number system? What did we do? ...
A place where people can share and propose solutions to interesting mathematics problems