What is the Gamma function? What does it have to do with the factorial of a number? And why does such a formula even work? The Factorial In our high school combinatorics course, we were introduced to the factorial of a natural number. We defined the factorial of a number $n$ to be the product of all the natural numbers till $n$. Or symbolically: $$n! = 1 . 2 . 3 ... (n-2) (n-1) n$$ This is a very useful function in Counting problems. This function also pops up in the exponential function: $$e^x = 1+\frac{x}{1!}+\frac{x^2}{2!}+\frac{x^3}{3!}+...$$ Setting this aside, we think: can we 'extend' this function to all real number? Surely, even if we were to come up with such a function, what would it mean to take this new 'factorial' of some real number? Well, let's take a look at one important property of the factorial function: $$n! = n(n-1)!$$ and this is true for all natural numbers $n$. So, even if we came up with this homologous function, we...
A place where people can share and propose solutions to interesting mathematics problems