Skip to main content

Problems that deceive you #1

Let us look at one of the most easiest problems in calculus
$$\int_0^{\frac{\pi}{2}}\sqrt{4\sin^2\frac{x}{2}-4\sin\frac{x}{2}+1}\; dx$$
Seems pretty simple and straightforward, doesn't it? Inside the square root, the expression evaluates to $(2\sin\frac{x}{2}-1)^2$, and thus the integral will be
$$\int_0^{\frac{\pi}{2}}\Bigl(2\sin\frac{x}{2}-1\Bigr)dx$$
This then can be evaluated by the following:
$$\biggl[-4\cos\frac{x}{2} -x\biggr]_0^{\frac{\pi}{2}}$$
Hold on for the surprise...

Its wrong!


What seemed like a really straightforward and easy problem, is designed in such a way to appear easy so that we approach the wrong way.

Why is the approach wrong?

We did not consider the fact that a simple square root symbol represents its principal square root i.e., the positive square root. That means each and every value the expression inside the original integral evaluates to a positive quantity. But that is not the case when we simplified the integral to 
$$\int_0^{\frac{\pi}{2}}\Bigl(2\sin\frac{x}{2}-1\Bigr)dx$$
In the above integral, the expression inside can also evaluate to a negative quantity, precisely when $\sin \frac{x}{2} \lt \frac{1}{2}$. So we must find an another way out of this.

The correct approach

The original integral evaluates to 
$$\int_0^{\frac{\pi}{2}}\sqrt{\Bigl(2\sin\frac{x}{2}-1\Bigr)^2}\; dx$$
This can be split as 
$$\int_0^{\frac{\pi}{6}}\sqrt{\Bigl(2\sin\frac{x}{2}-1\Bigr)^2}+\int_{\frac{\pi}{6}}^{\frac{\pi}{2}}\sqrt{\Bigl(2\sin\frac{x}{2}-1\Bigr)^2}\; dx$$
When we are cancelling out the square roots, we must be sure to make the outside expression positive. We all know that
$$1-2\sin\frac{x}{2}\ge 0, x\in \Bigl[0, \frac{\pi}{6}\Bigr]$$
$$2\sin\frac{x}{2}-1\ge 0, x\in \Bigl[\frac{\pi}{6}, \frac{\pi}{2}\Bigr]$$
Applying the above formulae in the split integral, we obtain
$$\int_0^{\frac{\pi}{6}}\Bigl(1-2\sin\frac{x}{2}\Bigr)+\int_{\frac{\pi}{6}}^{\frac{\pi}{2}}\Bigl(2\sin\frac{x}{2}-1\Bigr)\; dx$$
which then can be evaluated into a value.

Comments

Popular posts from this blog

The $\operatorname{erf}$ function

Can a function be 'defined' as the anti-derivative of another function? $\operatorname{erf}$ is one such function. Even though it has various proper infinite series expansions (as in Wolfram MathWorld - Erf ), it is defined by mathematicians as such: $$\operatorname{erf}(z) \equiv \frac{2}{\sqrt{\pi}}\int_0^ze^{-t^2}dt$$ This function has extensive implications in statistics, and can be used to express the integral of $e^{-x^2}$ and $e^{x^2}$. See the post that tries to find  integral of $e^{x^2}$  - we need not use integration by parts there, but rather can use the $\operatorname{erf}$ function. Source: Wolfram MathWorld

Is this seat taken?

100 people are waiting to board a plane. The first person’s ticket says Seat 1; the second person in line has a ticket that says Seat 2, and so on until the 100th person, whose ticket says Seat 100. The first person ignores the fact that his ticket says Seat 1, and randomly chooses one of the hundred seats (note: he might randomly choose to sit in Seat 1). From this point on, the next 98 people will always sit in their assigned seats if possible; if their seat is taken, they will randomly choose one of the remaining seats (after the first person, the second person takes a seat; after the second person, the third person takes a seat, and so on). What is the probability the 100th person sits in Seat 100? This problem can be solved intuitively. The first step to solve this problem is to understand that the last person will either get his seat or the first person's seat. But why? If the 1st person chooses 1st seat itself, everybody gets their own seat (i.e., the last person will g...

Understanding logarithmic functions for complex numbers

Imaginary numbers are not 'imaginary'. Real numbers are not 'real'. In fact, they're both in our heads... We are quite familiar with the logarithmic function. We define it as the inverse of the exponential function. That is, we say: $$\log{e^x} = e^{\log{x}} = x$$ (In fact, this is how the inverse of a function is even defined.) Now, we're all comfortable with the natural log. We use it for various results, but we always keep in mind that the number we're evaluating is POSITIVE. Why though? Let's consider some negative number $a$. What does it mean to take it's natural logarithm? It means to find a number such that $e$ raised to that number gives $a$. And surely since $e$ raised to any power always gives a positive value, it makes no sense to take the log of a negative number, right? Right? Complex Numbers: Function Domains Remember how we  extended  the existence of real numbers to the complex number system? What did we do? ...